DAFTAR ISI | CONTENTS

97 Santi Purwa Sari, Abdul Mun'im, Dini Kusumaningtyas
Aktivitas Gastroprotektif Kombinasi Ekstrak Kultil Batang Minah (Azadirachta indica A. Juss) dan Rimpang Kunyit (Curcuma domestica Linn.) pada Tikus Putih yang Diinduksi Asetosal

102 Banu Ari Wuyanto, Dradhani Wayu Kurniawan, Iskandar Sobri
Formulaul dan Efektivitas Gel Antiseptik Tangan Mynak Atsiri Lengkuas (Alpinia galanga (L.) Willd.)

108 Yustina Sri Hartini, Subagus Waryowidodo, Sinarina Widyawati, Agustinus Yuswanto
Uji Aktivitas Fagositosis Makrofag Fraksi-fraksi dari Ekstrak Metanol Daun Sairi Merah (Piper crocatum Ruiz & Pav.) Secara In Vitro

116 Martha Reni, Basuki Hidayat, Sri Aguswari, Karyadi, Cahya Nova Ariyantoro, Muhammad Subur, Titi Sekar Humairi, Reni Wahyudi, Abdul Mu'ajaz, Johan Maskhar
Preliminary Study of 111In-DOTA-Trastuzumab, A Potential Radiopharmaceutical for Therapy of Breast Cancer Positive HER-2

123 Isk Purwita Sari, Abrie Nurrochmad, Iwan Muris Setyawati, Sardi Jaman
Kurkurum Analóg, PGV-0 dan GVT-0 Menghambat Absorpsi Kolesterol dengan Penghambatan Aktivitas Enzim Lipase

127 Dini Purwita, Reni Ayi Amalia, Amalia Maul
Respon Galas Leucomaculans mesenteroides dan Weissella confusa terhadap pH Kondisi Pertumbuhan Menggunakan Antibiotik sebagai Indikator

134 Endang Lukitanegi, Anny A. Mustikawaty, Bambang Susetyo Ari Sudarmanto
Homology Modelling and Molecular Docking Senyawa Aktif dari Bengkoang (Pachyrhizus erosus) sebagai Inhibitor Tirosinase pada Homo sapiens

142 Ros Sumarny, Lestari Rahayu, N Made Dw Sandhiartama, Liert Mory
Efek Stimulansia Infus Lada Hitam (Piperis nigri fructus) pada Mencit

147 Titin Yunandy, Novik Nurhidayat
Aktivitas Antimikroba dan Analisis Gen Plantarisin F dari Isolat Lactobacillus Asal Bubuhan Topis

156 Kamila Mustikasari, Marj Santoso
3,3'-Di(5,7-dibromoindol-3-ii)-indolin-2-on: Sintesis dan Uji Sistotoksik terhadap Sel Kanker Kolon WiDr

160 Titik Sumarti, Ria Pratini, Mar Dimonyo, Yudri Rianto
Kombinasi Ekstrak Etanol Buah Mengkudu (Morinda citrifolia L.) dan Daun Pepaya (Carica papaya L.) sebagai Gastroprotective selama Pengobatan Tuberkulosis

167 Maria Ulah, Edwi Sasmito, Triana Heriati
Immunomodulator Compound from Myrmecodia pendens Merr & Perry

175 Siti Satriawati, Latiah Kosasari Darusman, Wulan Trisnayuni, Irawan Baturba
Efektivitas Krim Anti Jerawat Kayu Secang (Caesalpinia sappan) terhadap Propionibac terium acnes pada Kulit Kelinci

182 Yudi Anggriani, Agustini Banjir, Erliana
Evaluasi Penggunaan Antibiotika di Ruang HCU dan Ruang ICU Rumah Sakit Kanker "Dharmas" Februari – Maret 2012

191 Leonardus Broto Sugeng Kardono, Liandharmi, Nina Aritani, Yeti Mulyati Iskandari, Siti Masrubah, Broto Sutaryo
Development of Papaya Latex, Papaya Extract (Carica papaya L.) and Yam Bean Tuber Extract (Pachyrhizus erosus (L.) Urb.) for Skin Lightening Lotion Based on Tyrosinase Inhibition and Antioxidant Activities

197 Sri Hartini, Megawati, Nina Aritani, Melvawati L, M. Hanafi
Identifikasi Senyawa dari Ekstrak Air Rimpang Bangle (Zingiber cassumunar Roxb.)

202 Tera Senawati, Dila Farlisi
Sintesis Fenil Sinamat dan 4-Fenilkroman-2-on dan Uji Sitotoksisisitas terhadap Sel Kanker Serviks HeLa
Penanggung Jawab
Prof. Dr. Wahono Sumaryono, Apt.

DEWAN EDITOR/EDITORIAL BOARD

Ketua Editor/Chief Editor

Sekretaris Editor/Secretary

Bendahara/Treasurer
Afati Mulhah, S.Farm, Apt.

Anggota Dewan Editor/Board Member
Prof. Dr. Hirotaka Shibuya (Fukuyma University, Japan)
Prof. Dr. Lukman Hakim, M.Sc., Apt. (UGM)
Prof. Dr. Sudana Atmaciwijja, DEA., Apt. (FFUP)
Prof. Ernawati Sinaga, M.S., Apt. (UNAS)
Dr. Linda Maura Sitanggang, Apt. (DEPKES RI)
Prof. Dr. Zulies Ikawati, Apt. (UGM)
Dr. Syamsudin, M.Biomed., Apt. (FFUP)
Dr. Enade P. Istiyono, M.Sc., Apt. (USD)
Dr. Dian Ratih, M.Biomed., Apt. (FFUP)
Drs. I Wayan Redja, M.Chem., Apt. (FFUP)

Editor Teknik dan Pelaksana/Technical and Executive Editor

Administrasi dan Distribusi/Administration and Distribution
Rusmanah, Sukarna

Mitra Bebestari/Peer Reviewer
Daftar nama Mitra Bebestari akan dicantumkan pada halaman Ucapan Terima Kasih pada nomor terakhir dari setiap volume.

Penerbit/Publisher
Fakultas Farmasi Universitas Pancasila, Jakarta
Evaluasi Penggunaan Antibiotika di Ruang HCU dan Ruang ICU Rumah Sakit Kanker “Dharmais” Februari – Maret 2012

(Evaluation of Antibiotic Usage in HCU and ICU Wards in “Dharmais” Cancer Hospital February to March 2012)

YUSI ANGGRIANI¹, AGUSDINI BANUN², ERLIANA¹

¹Fakultas Farmasi, Universitas Pancasila, Srengseng Sawah, Jagakarsa, Jakarta 12640.
²RS Kanker Dharmais, Jl. Let. Jend. S. Parman Kav. 84-86, Slipi, Jakarta Barat 11420.

Diterima 6 Maret 2013, Disetujui 27 September 2013

Abstrak: Penggunaan antibiotika yang tinggi dapat memicu penggunaan antibiotika yang tidak rasional. Penelitian bertujuan untuk mengevaluasi penggunaan antibiotika secara kuantitatif dan kualitatif selama bulan Februari-Maret 2012. Pengambilan data dilakukan secara prospektif dengan mengambil data dari rekam medis dan pengamatan langsung pasien yang sedang dirawat. Parameter evaluasi kuantitatif menggunakan indikator WHO tentang evaluasi penggunaan antibiotika di rumah sakit dan Defined Daily Dose. Evaluasi kualitatif menggunakan kriteria Gyssens. Hasil studi menunjukkan, antibiotika paling banyak digunakan pada bulan Februari adalah seftriakson, yaitu 54,5 DDD/100 hari rawat di ruang HCU dan 52,5 DDD/100 hari rawat di ruang ICU. Penggunaan antibiotika terbanyak di bulan Maret adalah meropenem (Ruang HCU 36,0 DDD/100 dan ruang ICU 122,73 DDD/100 hari rawat). Penggunaan antibiotika kombinasi sebesar 32,9% di HCU dan pada pasien ICU 40%. Tes sensitivitas antibiotika hanya dilakukan pada 11,1% pasien yang menerima antibiotika. Tes kultur kuman hanya dilakukan pada 18 dari 153 pasien (11,8%). Pasien ADE (Antimicrobial Documented Empirical) sebanyak 98,7%, ADT (Antimicrobial Documented Therapy) sebanyak 1,3% dan ADET (Antimicrobial Documented Empirical Therapy) sebanyak 8,6%. Kategori VI paling banyak ditemukan yaitu sebanyak 88,2%. Penggunaan antibiotika sesuai dengan formulirium 93,9%.

Kata kunci: evaluasi, antibiotika, ATC/DDD, pola kuman, kriteria Gyssens.

Abstract: Frequent use of antibiotics may lead to an irrational use of antibiotic. The objectives of this study were to evaluate the use of antibiotics quantitatively and qualitatively in the Dharmais Cancer Hospital during February to March 2012. Data collection was conducted prospectively. Parameter evaluation for quantitative analysis was the WHO's indicator regarding how to investigate antimicrobial use in hospital and Defined Daily Dose. Qualitative analysis based on Gyssens criteria. In February, the most used antibiotic in HCU and ICU was ceftriaxone (54.5 DDD/100 patient-days in HCU and in ICU 52.5 DDD/100 patient-days). While in March, the most used antibiotic in HCU and ICU was meropenem (in ICU 36.02 DDD/100 patient-days and in ICU 122.73 DDD/100 patient-days). At least 32.9% of HCU patients and 40% of ICU patients were prescribed with combination of antibiotics, and 11.1% patients in HCU/ICU received antimicrobial drug sensitivity test. Culture tests were only performed in 18 out of 153 patients (11.8%). Antimicrobial Documented Empirical (ADE) was 98.7%, Antimicrobial Documented Therapy (ADT) was 1.3%, and Antimicrobial Documented Empirical Therapy (ADET) was 8.6%. Most of antibiotic used in HCU and ICU were classified as category VI. They could not be evaluated due to incomplete data information (88.23%). The prescription compliance to the hospital formulirium list was 93.9%.

Keywords: evaluation, antibiotic, ATC/DDD, germ pattern, Gyssens criteria.
PENDAHULUAN

Penggunaan antibiotika yang tinggi di seluruh dunia memicu penggunaan yang tidak rasional. Saat ini antibiotika sering digunakan untuk penyakit non infeksi. Hasil penelitian pada tahun 2001 di Amerika Serikat menunjukkan bahwa lebih dari 50% resep antibiotika diberikan untuk infeksi saluran nafas, lebih dari separuhnya mungkin viral, yang tidak memerlukan antibiotika(4). Di Indonesia juga terjadi kondisi serupa, penelitian yang dilakukan di Yogyakarta mengungkapkan bahwa 9% pasien anak yang menderita infeksi saluran pernapasan atas (ISPA) berupa batuk, pilek, radang tenggorokan memeroleh resep antibiotika. Padahal, berdasarkan kriteria World Health Organization (WHO) untuk ISPA, ditentukan bahwa hanya 7-14% pasien yang seharusnya mendapat antibiotika(5). Penggunaan yang tidak rasional dapat menimbulkan efek yang tidak diinginkan seperti efek samping antibiotika, kegagalan terapi, resistensi antibiotika, dan pengeluaran biaya yang tidak perlu.

Di Indonesia, berdasarkan penelitian yang dilakukan di ruang ICU Rumah Sakit Umum Pasat (RSUP) Fatmawati periode Januari-April 2005, ketepatan pemberian dosis antibiotika masih rendah (52,2%). Pasien tersebut mendapatkan antibiotika dengan dosis kurang sebesar 20,9% dan 26,9% pasien medapatkan dosis lebih. Kesesuaian pemberian antibiotika dengan diagnosis sebesar 36,6%, sedangkan 63,4% pasien mendapatkan antibiotika profilaksis untuk tindakan operasi(6). Selain itu, di ruang bedah Rumah Sakit Kanker Dharmais, penggunaan antibiotika profilaksis cukup tinggi yaitu 34,7%. Antibiotika yang paling banyak digunakan adalah sefalosporin generasi III, yaitu seftriaxon (32%). Pemberian antibiotika profilaksis tidak tepat waktu sebesar 84,7% pasien, selain itu 81,98% pasien menerima antibiotika profilaksis > 24 jam(7). Data ini menunjukkan bahwa penggunaan antibiotika belum rasional. Oleh karena itu, penggunaan antibiotika, harus selalu dipantau agar penggunaannya efektif dan efisien dengan efek samping yang minimal terhadap pasien dan komunitas, serta meminimalisasi terjadinya resistensi mikroorganisme. Untuk meningkatkan kerasional penggunaan antibiotika evaluasi dapat dilakukan secara rutin terhadap penggunaan antibiotika di berbagai macam kasus di sarana pelayanan kesehatan terutama di rumah sakit. Penelitian ini bertujuan untuk mengevaluasi penggunaan antibiotika secara kuantitatif dan kualitatif di ruang HCU dan ICU rumah sakit Kanker Dharmais.

BAHAN DAN METODE

I: penggunaan antibiotika tepat (rasional)

Ia: tidak rasional karena dosis yang tidak tepat

Ib: tidak rasional karena interval dosis yang tidak tepat

II: tidak rasional karena rute pemberian yang salah

IIa: tidak rasional karena pemberian antibiotika...
terlalu lama
IIIb: tidak rasional karena pemberian antibiotika terlalu singkat
IVA: tidak rasional karena ada antibiotika lain yang lebih efektif
IVB: tidak rasional karena ada antibiotika lain yang kurang toksik
IVC: tidak rasional karena ada antibiotika lain yang lebih murah
IVD: tidak rasional karena ada antibiotika lain yang spektrumnya lebih sempit
V: tidak rasional karena tidak ada indikasi penggunaan antibiotika
VI: data tidak lengkap atau tidak dapat dievaluasi

HASIL DAN PEMBAHASAN

Berdasarkan data statistik bidang rekan medis Rumah Sakit Kanker Dharmas, kanker payudara dan kanker serviks menduduki peringkat pertama dan kedua dalam daftar 10 kanker tersering tahun 2017(12), sehingga pasien yang dirawat di ruang ICU dan HCU kebanyakan berjenis kelamin perempuan.

Demografi penjamin kesehatan dapat dilihat pada Tabel 2. Hasil penelitian menunjukkan bahwa pasien di ruang ICU dan HCU adalah pasien dengan jaminan asuransi kesehatan yaitu sebesar 56,6% di ruang HCU dan 53,3% di ruang ICU. Hal ini dapat terjadi karena pasien merupakan penderita kanker yang

| Tabel 1. Demografi usia pasien dewasa ruang HCU dan ICU periode Februari-Maret 2012. |
|---------------------------------|----------------|----------------|----------------|----------------|
| Usia | Jumlah pasien | Persentase |
| | HCU | ICU | HCU | ICU |
| 20-40 tahun | 32 | 3 | 21,1% | 20% |
| 41-60 tahun | 84 | 6 | 55,3% | 40% |
| >60 tahun | 34 | 5 | 22,4% | 33,3% |
| Tidak jelas | 2 | 1 | 1,3% | 6,7% |
| Total | 152 | 15 | 100% | 100% |

Gambar 1. Demografi jenis kelamin pasien ruang HCU dan ICU periode Februari-Maret 2012.

| Tabel 2. Demografi penjamin kesehatan pasien ruang HCU periode Februari-Maret 2012. |
|---------------------------------|----------------|----------------|----------------|
| Penjamin kesehatan | Institusi | Jumlah pasien | Persentase |
| Umum/pribadi | 63 | 41,5% |
| Penjamin dari institusi | 86 | 56,6% |
| a) Askes/ sosial | 47 | 30,9% |
| b) Asuransi Sinarmas | 2 | 1,3% |
| c) Jamkesmas | 10 | 6,6% |
| d) PT Pos Indonesia | 2 | 1,3% |
| e) IPS | 13 | 8,6% |
| f) Perkebunan Nusantara | 2 | 1,3% |
| g) Lain-lain | 10 | 6,6% |
| Tidak jelas | 3 | 2,0% |
Tabel 3. Demografi penjamin kesehatan pasien ruang ICU periode Februari-Maret 2012.

<table>
<thead>
<tr>
<th>Penjamin Kesehatan</th>
<th>Institusi</th>
<th>Jumlah Pasien</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umum/pribadi</td>
<td>-</td>
<td>6</td>
<td>40%</td>
</tr>
<tr>
<td>Penjamin dari institusi</td>
<td>Institutisi:</td>
<td>8</td>
<td>53,3%</td>
</tr>
<tr>
<td>a) Askes/sosial</td>
<td>5</td>
<td>33,3%</td>
<td></td>
</tr>
<tr>
<td>b) Jamkesmas</td>
<td>2</td>
<td>13,3%</td>
<td></td>
</tr>
<tr>
<td>c) JPS</td>
<td>1</td>
<td>6,7%</td>
<td></td>
</tr>
<tr>
<td>Tidak jelas</td>
<td>1</td>
<td>6,7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

menerlukan pengobatan dengan biaya yang mahal, oleh karena itu pasien tanpa jaminan pembiayaan terapi akan sulit mendapatkan pengobatan kanker. Penderita kanker tanpa jaminan kesehatan mengalami kesulitan untuk pengobatan karena terkendala biaya. Menurut ASEAN Costs in Oncology, 85% pasien atau keluarganya bangkrut karena menanggung biaya obat dan perawatan kanker.

Pasien rawat inap yang menggunakan satu atau lebih antibiotika. Penggunaan antibiotika kombinasi di ruang HCU sebanyak 50 dari 152 pasien (32,9%) dan di ruang ICU sebanyak 6 dari 15 pasien (40%). Satu pasien kemungkinan bisa mendapatkan 2 kali peresepan kombinasi pada waktu yang berbeda, sehingga jumlah kasus kombinasi antibiotika yang ditelusuri menjadi 64 untuk pasien HCU, dan 7 kasus untuk pasien ICU. Jenis antibiotika kombinasi yang diberikan pada pasien HCU dan ICU dapat dilihat pada tabel 4 dan 5.

Namun, dari 50 pasien tersebut, hanya 8 pasien (16%) yang dilakukan tes kultur untuk mengetahui jenis mikroorganisme yang menginfeksi. Hal ini menunjukkan sebanyak 42 dari 50 pasien (84%) diberikan antibiotika kombinasi tanpa berdasarkan kultur kuman. Sebanyak 6 dari 50 pasien tersebut (12%) memiliki jumlah leukosit dibawah normal dan 12 dari 50 pasien (24%) memiliki jumlah leukosit normal, artinya pasien-pasien tersebut tidak terindikasi infeksi. Sebanyak 32 dari 50 pasien (64%) terindikasi mengalami infeksi yang ditandai dengan jumlah leukosit di atas normal. Sehingga pemberian antibiotika hanya diperlukan pada 64% pasien.

Hanya 1 dari 5 pasien (20%) di ruang ICU yang mendaftarkan kombinasi antibiotika dilakukan tes kultur untuk mengetahui kuman yang menginfeksi, 4 pasien (80%) mendapatkan antibiotik tidak berdasarkan kultur kuman. Sebanyak 2 dari 5 pasien (20%) tidak terindikasi infeksi karena memiliki jumlah leukosit normal, dan sebanyak 3 dari 5 pasien (60%) memiliki jumlah leukosit di atas normal sehingga pemberian antibiotika kombinasi terbanyak diberikan pada pasien dengan adanya gejala terinfeksi kuman yang ditandai dengan meningkatnya jumlah leukosit melampaui jumlah normal.

Kombinasi antibiotika terbanyak di ruang HCU yaitu sefalosporin dan metronidazole (37,5%) sedangkan di ruang ICU yaitu sefalosporin dan karbapenem (66,7%). Pemberian kombinasi antibiotika antara sefalosporin dengan metronidazole dapat meningkatkan efektivitas terapi pada pasien dengan infeksi intra abdomen dibandingkan dengan pemberian monoterapi(13). Sedangkan kombinasi sefalosporin dan karbapenem, keduaanya merupakan antibiotika golongan beta laktam sehingga kombinasi bersifat sinergis melawan bakteri gram positif dan negatif(14). Kombinasi antibiotika dapat dilakukan

<table>
<thead>
<tr>
<th>Jenis Kombinasi</th>
<th>Jumlah Kombinasi</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sefalosporin + metronidazole</td>
<td>24</td>
<td>37,5%</td>
</tr>
<tr>
<td>Sefalosporin + sefalosporin</td>
<td>14</td>
<td>21,9%</td>
</tr>
<tr>
<td>Karbapenem + sefalosporin</td>
<td>11</td>
<td>17,2%</td>
</tr>
<tr>
<td>Sefalosporin + karbapenem</td>
<td>2</td>
<td>3,1%</td>
</tr>
<tr>
<td>Karbapenem + metronidazole</td>
<td>2</td>
<td>3,1%</td>
</tr>
<tr>
<td>Sefalosporin + aminoglikosida</td>
<td>2</td>
<td>3,1%</td>
</tr>
<tr>
<td>+ anti TB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sefalosporin + kuinolon</td>
<td>2</td>
<td>3,1%</td>
</tr>
<tr>
<td>Karbapenem + kuinolon</td>
<td>2</td>
<td>3,1%</td>
</tr>
<tr>
<td>Sefalosporin + aminoglikosida</td>
<td>1</td>
<td>1,6%</td>
</tr>
<tr>
<td>+ anti TB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sefalosporin + aminoglikosida</td>
<td>1</td>
<td>1,6%</td>
</tr>
<tr>
<td>+ karbapenem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karbapenem + antibiotika lain</td>
<td>1</td>
<td>1,6%</td>
</tr>
<tr>
<td>(glikopeptida)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karbapenem + aminoglikosida</td>
<td>1</td>
<td>1,6%</td>
</tr>
<tr>
<td>Kuinolon + metronidazole</td>
<td>1</td>
<td>1,6%</td>
</tr>
<tr>
<td>+ penilin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabel 5. Jenis kombinasi antibiotika di ruang ICU periode Februari-Maret 2012.

<table>
<thead>
<tr>
<th>Jenis Kombinasi</th>
<th>Jumlah Kombinasi</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sefalosporin + penilin</td>
<td>1</td>
<td>14,3%</td>
</tr>
<tr>
<td>Sefalosporin + karbapenem</td>
<td>5</td>
<td>71,4%</td>
</tr>
<tr>
<td>Sefalosporin + sefalosporin</td>
<td>1</td>
<td>14,3%</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>100%</td>
</tr>
</tbody>
</table>
untuk pengobatan pada infeksi berat yang etiologinya belum jelas karena keterlambatan pengobatan dan dapat dapat membebaskan jiwa pasien. Pasien HCU dan ICU merupakan pasien dengan kebutuhan khusus sehingga sangat lemah dan rentan terhadap infeksi berat, sehingga kemungkinan memerlukan kombinasi antibiotika. Namun, pemberian antibiotika kombinasi seharusnya didahului dengan uji kultur dan tes sensitivitas untuk memastikan bahwa pasien benar-benar mengalami infeksi berat yang memerlukan kombinasi antibiotika.

Antibiotika yang diresepkan sesuai dengan formulirum sakit. Sebanyak 46 dari 49 (93,9%) antibiotika yang diresepkan untuk pasien di ruang HCU sesuai dengan formulirum Sakit Kanker Dharmais tahun 2010. Formulirum terbaru (tahun 2012) belum selesai direvisi sehingga sebagai acuan evaluasi digunakan formulirum 2010. Antibiotika yang tidak termasuk di dalam formulirum yaitu Mikacin 500 mg, Injeksi soperan 1 g dan tablet santibi plus. Sebanyak 13 dari 13 (100%) antibiotika yang diresepkan untuk pasien ICU masuk dalam formulirum tahun 2010 Rumah Sakit Kanker Dharmais.

Tes sensitivitas antibiotika untuk tiap peresean antibiotika. Sebanyak 17 dari 153 pasien (11,11%) mendapat tes sensitivitas kuman untuk mengetahui antibiotika apa yang dapat membunuh bakteri penyebab infeksi. Hasil ini rendah bila dibandingkan dengan penelitian yang dilakukan oleh Berildi di rumah sakit di Norwegia, tes sensitivitas kuman yang lakuuk cukup tinggi, yaitu sebanyak 146 dari 166 episode (88%) (14). Keberhasilan suatu terapi antibiotika didasarkan pada daya sensitifnya membunuh mikroorganisme yang telah diketahui melalui tes sensitivitas. Frekuensi tes sensitivitas yang dilakukan menunjukkan kemampuan rumah sakit tersebut untuk menyediakan terapi antibiotika yang rasional terhadap pasien (15).

Rata-rata durasi dalam setiap peresean antibiotika. Rata-rata pasien rawat inap di ruang HCU mendapat terapi antibiotikaselama 16,7 hari.

Tabel 6. Penggunaan antibiotika di ruang HCU berdasarkan sistem ATC/DDD bulan Februari-Maret 2012.

<table>
<thead>
<tr>
<th>Antibiotika</th>
<th>Kode ATC</th>
<th>Penggunaan (g)/rute</th>
<th>DDD WHO/100 hari rawat</th>
<th>DDD/100 hari rawat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Feb</td>
<td>Mar</td>
<td>Feb</td>
</tr>
<tr>
<td>Seftriakson</td>
<td>J01DD04</td>
<td>194</td>
<td>P</td>
<td>54</td>
</tr>
<tr>
<td>Seftipron</td>
<td>J01DE02</td>
<td>43</td>
<td>P</td>
<td>67</td>
</tr>
<tr>
<td>Seftokasim</td>
<td>J01DD01</td>
<td>76</td>
<td>P</td>
<td>114</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>J01X01</td>
<td>55</td>
<td>P</td>
<td>42</td>
</tr>
<tr>
<td>Sefoperazon + sulbaktam</td>
<td>J01DD62</td>
<td>46</td>
<td>P</td>
<td>91</td>
</tr>
<tr>
<td>Meropenem</td>
<td>J01DH02</td>
<td>97</td>
<td>P</td>
<td>152</td>
</tr>
<tr>
<td>Seffazidin</td>
<td>J01DD02</td>
<td>36</td>
<td>P</td>
<td>400</td>
</tr>
<tr>
<td>Sefoperazon</td>
<td>J01DD12</td>
<td>30</td>
<td>P</td>
<td>22</td>
</tr>
<tr>
<td>Sefepim</td>
<td>J01DE01</td>
<td>19</td>
<td>P</td>
<td>7</td>
</tr>
<tr>
<td>Seffiksin</td>
<td>J01DD08</td>
<td>0,6</td>
<td>O</td>
<td>0,6</td>
</tr>
<tr>
<td>Siprolifokasasin</td>
<td>J01MA2</td>
<td>4</td>
<td>O</td>
<td>5</td>
</tr>
<tr>
<td>Gentamisin</td>
<td>J01GB03</td>
<td>0,16</td>
<td>P</td>
<td>24</td>
</tr>
<tr>
<td>Streptomisin</td>
<td>J01GA01</td>
<td>5</td>
<td>P</td>
<td>100</td>
</tr>
<tr>
<td>Rifampisin</td>
<td>J04AB02</td>
<td>0,9</td>
<td>O</td>
<td>60</td>
</tr>
<tr>
<td>Etambutol + isoniazid</td>
<td>J04AM03</td>
<td>3 tab, O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosfomisin</td>
<td>J01X01</td>
<td>3</td>
<td>P</td>
<td>5</td>
</tr>
<tr>
<td>Doripenem</td>
<td>J01DH04</td>
<td>4,5</td>
<td>P</td>
<td>18</td>
</tr>
<tr>
<td>Moksifokasasin</td>
<td>J01MA14</td>
<td>0,8</td>
<td>P</td>
<td>0,4</td>
</tr>
<tr>
<td>Sulametokasozal + trimethoprim</td>
<td>J01EE01</td>
<td>1,92</td>
<td>O</td>
<td>192</td>
</tr>
<tr>
<td>Seftizoksin</td>
<td>J01DD07</td>
<td>17</td>
<td>P</td>
<td>56</td>
</tr>
<tr>
<td>Sefadrosil</td>
<td>J01DB05</td>
<td>1,5</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Teikoplanin</td>
<td>J01X0A2</td>
<td>2,4</td>
<td>P</td>
<td>4</td>
</tr>
<tr>
<td>Levofokasasin</td>
<td>J01MA12</td>
<td>-</td>
<td></td>
<td>4,75</td>
</tr>
<tr>
<td>Piperasilin+ tazobactam</td>
<td>J01CR05</td>
<td>27</td>
<td>P</td>
<td>1400</td>
</tr>
<tr>
<td>Sefditoren pivoksil</td>
<td>J01DD16</td>
<td>0,4</td>
<td>O</td>
<td>40</td>
</tr>
<tr>
<td>Azitromisin</td>
<td>J01FA10</td>
<td>-</td>
<td>1,5</td>
<td>O</td>
</tr>
<tr>
<td>Amikasin</td>
<td>J01GB06</td>
<td>-</td>
<td>5</td>
<td>P</td>
</tr>
</tbody>
</table>

Keterangan: O = Oral; P = Perkutan.

<table>
<thead>
<tr>
<th>Antibiotika</th>
<th>Kode ATC</th>
<th>Penggunaan (g)/rute</th>
<th>DDD pustaka/100 hari rawat</th>
<th>DDD/100 hari rawat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seftriakson</td>
<td>J01DD04</td>
<td>21 / P</td>
<td>200</td>
<td>Feb 52,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mar 9,1</td>
</tr>
<tr>
<td>Levoflokasin</td>
<td>J01MA12</td>
<td>1,5 / P</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Piperasin +</td>
<td>J01CR05</td>
<td>67,5 / P</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>Tazobaktam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sefoperazon + sulbaktam</td>
<td>J01DD62</td>
<td>6 / P</td>
<td>400</td>
<td>Feb 7,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mar 22,7</td>
</tr>
<tr>
<td>Meropenem</td>
<td>J01HD02</td>
<td>9 / P</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sefrikosim</td>
<td>J01DD07</td>
<td>7 / P</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Sefotaksim</td>
<td>J01DD01</td>
<td>3 / P</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Seflazidim</td>
<td>J01DD02</td>
<td>3 / P</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata pasien rawat inap di ruang ICU mendapat terapi antimikroba selama 4,4 hari. Durasi terapi pemberian antibiotika harus berdasarkan indikasi klinis dan kuman yang menginfeksi dan terapi antibiotika dihentikan setelah infeksi teratasi. Pasien dengan kondisi kritis akan dirawat di ruang ICU, namun apabila kondisi pasien sudah stabik maka pasien akan dipindahkan ke ruang HCU untuk terapi lebih lanjut. Proses ini juga termasuk pada penelitian karena semua pasien ICU juga merupakan pasien HCU.

Antibiotika yang diresepkan dengan nama generik. Persepsi antibiotika dengan nama generik rendah, yaitu sebesar 28,6%. Hal ini menunjukkan bahwa antibiotika yang diresepkan oleh dokter di ruang ICU dan HCU adalah antibiotika dengan merek dagang. Hal ini terjadi karena obat generik yang terdapat dalam daftar formulirum rumah sakit juga rendah. Antibiotika dengan generik dalam formulirum hanya 28 dari 69 jenis antibiotika (40,58%). Jika ditinjau dari kesesuaian persepsi dengan formulirum, para dokter telah meresepkan antibiotika sesuai dengan formulirum.

Tabel 6 menunjukkan secara umum penggunaan antibiotika secara kuantitas dalam rumah sakit Kanker Dharmas yang lebih rendah dibanding standar DDD WHO. Lima besar penggunaan tertinggi antibiotika di ruang HCU pada bulan Februari 2012 yaitu seftriakson, meropenem, metronidazole, sefotaksim, dan sefoperazon + sulbaktam. Penggunaan seftriakson sebesar 54,49 DDD/100 hari rawat menunjukkan bahwa penggunaan seftriakson sebesar 0,54 DDD setiap harinya. Nilai DDD untuk seftriakson yaitu 2 DDD. Penggunaan seftriakson masih lebih rendah dibanding batas penggunaan DDD untuk seftriakson. Pada bulan Maret 2013, terjadi perubahan 5 penggunaan tertinggi antibiotika di ruang HCU yaitu meropenem, sefotaksim, metronidazole, sefriakson dan sefoperazon + sulbaktam. Penggunaan meropenem sebesar 36 DDD/100 hari rawat menunjukkan bahwa tiap pasien menerima 0,36 DDD setiap harinya.

**Tabel 7 menunjukkan penggunaan antibiotika terbesar di ruang ICU bulan Februari 2012 adalah seftriakson, yaitu sebesar 52,5 DDD/100 hari rawat dan penggunaan antibiotika terbesar di ruang ICU bulan Maret 2012 adalah meropenem, yaitu sebesar 122,7 DDD/100 hari rawat. Hal ini menunjukkan bahwa tiap pasien menerima 0,52 DDD seftriakson tiap harinya dan 1,2 DDD meropenem tiap harinya. Nilai DDD WHO untuk seftriakson dan meropenem yaitu 2 DDD. Artinya, kuantitas penggunaan seftriakson masih di bawah batas penggunaan DDD, sedangkan untuk meropenem walalupun masih dibawah batas DDD.

Tabel 8. Tabel kesesuaian kuman pasien ICU dan HCU dengan pola kuman ruang ICU dan HCU periode Juli-Desember 2011.

<table>
<thead>
<tr>
<th>Kuman</th>
<th>KESSESUAIAN DENGAN POLA KUMAN RUANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>HCU</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>ICU</td>
</tr>
<tr>
<td>Staphylococcus simulans</td>
<td>ICU</td>
</tr>
<tr>
<td>Staphylococcus xylosus</td>
<td>ICU</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>HCU</td>
</tr>
<tr>
<td>Burkholderia</td>
<td>HCU</td>
</tr>
<tr>
<td>pseudomallei</td>
<td>HCU</td>
</tr>
<tr>
<td>Pseudomonas putida</td>
<td>HCU</td>
</tr>
<tr>
<td>Pseudomonas fluorescent</td>
<td>HCU</td>
</tr>
<tr>
<td>Pantoea agglomerans</td>
<td>Tidak termasuk HCU</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Tidak termasuk HCU</td>
</tr>
<tr>
<td>Staphylococcus hyicus</td>
<td>Tidak termasuk HCU</td>
</tr>
<tr>
<td>Citrobacter diversus</td>
<td>Tidak termasuk HCU</td>
</tr>
</tbody>
</table>
namun penggunaan di ruang ICU pada bulan Maret cukup tinggi dan perlu dimonitoring. Penggunaan meropenem yang berlebihan dapat menyebabkan berbagai efek yang merugikan seperti diare, mual muntah, peradangan pada tempat injeksi, sakit kepala, kemerahan pada kulit, dan thrombophlebitis

<table>
<thead>
<tr>
<th>Organisme</th>
<th>Antibiotika yang diresepkan</th>
<th>Efektivitas</th>
<th>antibiotika yang Seharusnya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Seftriakson</td>
<td>R</td>
<td>Doripenem, piperasilin+tazobactam</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Levofloksasin</td>
<td></td>
<td>Polimiksin B, kolistin</td>
</tr>
<tr>
<td>Staphylococcus simulans</td>
<td>Piperasilin kombinasi</td>
<td>R</td>
<td>Linezolid, vankomisin, tigesiklin, ofloksasin, moksifloksasin, teikopalin</td>
</tr>
<tr>
<td>Staphylococcus xylosus</td>
<td>Seftriakson</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Sefoperazon kombinasi</td>
<td>I</td>
<td>Trimethoprim, meropenem, tigesiklin, kloramfenikol, doripenem</td>
</tr>
<tr>
<td>Burkholderia Pseudomallei</td>
<td>Seftriakson</td>
<td>R</td>
<td>Ofloksasin, meropenem, kloramfenikol, doripenem</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Metronidazole</td>
<td>R</td>
<td>Amikasin, doripenem, piperasilin+tazobactan, moksifloksasin, netilmisin</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Sefultipartikin</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Ciprofloksasin</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Meropenem</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Gentamisin</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Burkholderia Pseudomallei</td>
<td>Sefoperazon kombinasi</td>
<td>R</td>
<td>Ofloksasin, meropenem, kloramfenikol, doripenem</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Sefizoksin</td>
<td>R</td>
<td>Amikasin, doripenem, piperasilin+tazobactan, moksifloksasin, netilmisin</td>
</tr>
<tr>
<td>Pseudomonas putida</td>
<td>Meropenem</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas putida</td>
<td>Sefoperazon kombinasi</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Amikasin</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Sefepim</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Doripenem</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Sefoperazon+ sulbactam</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Doripenem</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Sefizoksin</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Meropenem</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Sefoperazon+ sulbactam</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Doripenem</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Moksifloksasin</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli*</td>
<td>Doripenem</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli*</td>
<td>Moksifloksasin</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus hyicus</td>
<td>Doripenem</td>
<td>R</td>
<td>Imipenem, meropenem, netilmisin</td>
</tr>
<tr>
<td>Escherichia coli (inaktif)*</td>
<td>Moksifloksasin</td>
<td>S</td>
<td>Tidak dilakukan uji sensitivitas antimikroba</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa*</td>
<td>Doripenem</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Citrobacter diversus*</td>
<td>Moksifloksasin</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus hyicus*</td>
<td>Doripenem</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus hyicus*</td>
<td>Sefizoksin</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Burkholderia Pseudomallei</td>
<td>Doripenem</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>
penggunaan antibiotika dengan kuman (Tabel 9), kombinasi antibiotika, kesesuaian penggunaan antibiotika dengan Pedoman Penggunaan Antibiotika/PPAB RSKD\(^{17}\) dan kriteria Gyssens (Tabel 10).

Dilihat dari pola kuman, kuman yang paling banyak menginfeksi pasien HCU yaitu *Burkholderia pseudomallei* sebanyak 3 dari 16 pasien (20%), kuman ini sudah terdapat dalam pola kuman gram negatif di ruang HCU. Sebanyak 4 dari 11 kuman yang menginfeksi pasien HCU (36,36%) tidak termasuk dalam pola kuman HCU. Artinya ada kuman baru yang ditemukan di ruang HCU. Bakteri-bakteri tersebut adalah *Pantoea agglomerans*, *Staphylococcus hyicus*, *Cronobacter diversus* dan *Eschericia coli*. Kuman yang menginfeksi pasien ICU yaitu *Acinetobacter baumanii*, *Staphylococcus simulans* dan *Staphylococcus xylosus*. Ketiga kuman masuk dalam pola kuman gram negatif dan gram positif ruang ICU. Pola kuman yang digunakan adalah pola kuman periode Juli-Desember 2011 sedangkan penelitian dilakukan bulan Februari-Maret 2012 sehingga ada kemungkinan pola kuman. Revisi pola kuman perlu dilakukan serutin mungkin agar pola kuman yang digunakan adalah yang terkini/terbaru supaya terapi antibiotika dapat berjalan efektif.

Dilihat dari kesesuaian penggunaan antibiotika dengan kuman, dari 16 pasien, hanya 6 pasien (37,5%) diberikan antibiotika sesuai dengan kuman penyebab infeksi. Selain itu, 4 dari 6 pasien (66,7%) ternyata diberikan antibiotika yang sudah resisten/intermediate untuk membunuh bakteri. Hal ini dapat disebabkan oleh kurangnya sosialisasi tentang pola kuman kepada dokter ICU dan HCU.

Pasi dalam ruang HCU/ICU sebanyak 151 dari 153 pasien (98,68%) diberikan terapi empirik. Antibiotika diberikan antibiotika gejala infeksi pada pasien (misal demam, nyeri, angka leukosit pasien tinggi). Hal ini terjadi karena dilakukan tes kultur kuman setelah pasien masuk ruang rawat (ADE), dan hasil tes kultur kuman baru keluar beberapa hari kemudian. Hanya 2 dari 153 pasien (1,31%) yang dilakukan tes kultur kuman sebelum pasien masuk ruang HCU/ICU (ADT). Sebanyak 13 dari 153 pasien (8,55%) memiliki hasil tes kultur kuman negatif/steril namun tetap diberikan antibiotika sehingga pemberian antibiotika empirik diperpanjang (ADET). Berdasarkan kategori Gyssens, paling banyak masuk dalam kategori VI sebanyak 83,85% yaitu data tidak lengkap sehingga tidak dapat dievaluasi. Data yang tidak lengkap ini berupa tidak adanya tes kultur kuman yang menginfeksi dan tidak lengkapnya verks rekam medik. Syarat dapat dilakukan evaluasi Gyssens yaitu harus tersedia data kultur kuman\(^{17}\). Kategori IVa (tidak tepat karena ada antibiotika lain yang lebih efektif) ditemukan sebanyak 8,07%. Hal ini menunjukkan bahwa sebanyak 8,1% kasus penggunaan antibiotika di ruang HCU dan ICU menggunakan antibiotika yang telah resisten/mulai resisten. Kategori IVc (tidak tepat karena antibiotika lain yang lebih murah) ditemukan sebanyak 2,48%. Hal ini menunjukkan ada antibiotika lain yang lebih murah yang dapat dipakai dalam terapi berdasarkan acuan formularium Rumah Sakit Kanker “Dharmais” tahun 2010. Kategori IVb (tidak tepat karena ada antibiotika lain yang lebih aman) ditemukan sebanyak 1,9%. Kategori IIIb (tidak tepat karena durasi penggunaan terlalu sedikit) ditemukan sebanyak 1,9%. Kategori I (penggunaan antibiotika telah rasional) ditemukan hanya sebesar 1,24%. Ketepatan ini meliputi: tepat indikasi, tepat lama pemberian, tepat rute pemberian, tepat dosis, tepat frekuensi pemberian. Semua pasien dalam kategori ini diberikan terapi empirik. Kategori V (tidak rasional karena tidak ada indikasi penggunaan antibiotika) ditemukan sebanyak 0,62%. Antibiotika yang digunakan tidak berdasarkan indikasi klinis pasien dan tidak jelas penggunaannya untuk apa.

Dilihat dari kesesuaian penggunaan antibiotika dengan Pedoman Penggunaan Antibiotika (PPAB RSKD), hanya sebanyak 18 dari 153 pasien (11,76%) yang dilakukan pemeriksaan kultur kuman. Sebanyak 50 dari 152 pasien (32,89%) diberikan antibiotika

<table>
<thead>
<tr>
<th>Kriteria Gyssens</th>
<th>Definisi</th>
<th>Jumlah pasien</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>penggunaan antibiotika tepat (rasional)</td>
<td>2</td>
<td>1,2%</td>
</tr>
<tr>
<td>Iia</td>
<td>tidak rasional oleh karena dosis yang tidak tepat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iib</td>
<td>tidak rasional oleh karena interval dosis yang tidak tepat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lic</td>
<td>tidak rasional oleh karena route pemberian yang salah</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IIIa</td>
<td>tidak rasional karena pemberian antibiotika terlalu lama</td>
<td>3</td>
<td>1,9%</td>
</tr>
<tr>
<td>IIIb</td>
<td>tidak rasional karena pemberian antibiotika terlalu singkat</td>
<td>13</td>
<td>8,1%</td>
</tr>
<tr>
<td>Iva</td>
<td>tidak rasional karena ada antibiotika lain yang lebih efektif</td>
<td>3</td>
<td>1,9%</td>
</tr>
<tr>
<td>Ivb</td>
<td>tidak rasional karena ada antibiotika lain yang kurang toksik</td>
<td>4</td>
<td>2,5%</td>
</tr>
<tr>
<td>Ivc</td>
<td>tidak rasional karena ada antibiotika lain yang lebih murah</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ivd</td>
<td>tidak rasional karena ada antibiotika lain yang spektrumnya lebih sempit</td>
<td>1</td>
<td>0,6%</td>
</tr>
<tr>
<td>V</td>
<td>tidak rasional karena tidak ada indikasi penggunaan antibiotika</td>
<td>135</td>
<td>83,9%</td>
</tr>
<tr>
<td>VI</td>
<td>data tidak lengkap atau tidak dapat dievaluasi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIMPULAN

Penggunaan antibiotika di ruang HCU dan ruang ICU secara kuantitatif lebih rendah dibandingkan dengan standar DDD WHO. Secara kualitatif masih ditemukan beberapa penggunaan antibiotika yang tidak rasional yaitu penggunaan antibiotika tidak berdasarkan tes kultur kuman dan hasil uji sensitivitas. Kesesuaian peresepan dengan formularius tinggi, namun penggunaan antibiotika dengan nama generik rendah.

UCAPAN TERIMA KASIH

Kepada Rumah Sakit Kanker Dharmais yang telah memberikan ijin penelitian di ruang bedah, ruang HCU, dan ruang ICU.

DAFTAR PUSTAKA